

Flexible, reliable and efficient power plant technology – GE's Europe Experience

December 16, 2016

Confidential. Not to be copied, distributed, or reproduced without prior approval.

Bill Miller, Henrik Nielsen and Chinmoy Mohanty

© 2016, General Electric Company.

GE Proprietary Information - The information contained in this document is General Electric Company (GE) proprietary information. It is the property of GE and shall not be used, disclosed to others or reproduced without the express written consent of GE, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export

re-export is prohibited.

Power Service

Power Services delivers a more balanced portfolio across total plant capabilities.

Impact of renewable power on operation profiles

Demand on Flexibilty – Energy Production Germany

January 2016

0.00 01.01.00:00 03.01.08:46 05.01.14:20 07.01.21:53 10.01.05:26 12.01.13:00 14.01.20:33 17.01.04:06 19.01.11:40 21.01.19:13 24.01.02:46 26.01.10:20 28.01.17:53 31.01.23:00 Datum

Demand of flexible operation will increase ~ 20 % of volatile power production

FLEX SUITE[™] Steam Offering for Steam Plants

6

FLEET360* STEAM PLANT SERVICES SOLUTIONS -FLEXIBILITY

DIGITAL SOLUTIONS

- Steam Plant Asset Performance Management
- Low Load Optimization
- Part Load Optimization
- Enhanced Fast Ramp/Startup/Response
- BoilerOpt and Digital Boiler +
- Digital Twin

STEAM TURBINE

- Blade Vibration Monitoring
- Valves and Actuator Monitoring
- Enhanced ST Rotor Stress Control

BOILER

- Flame Scanners
- Plasma Burner
- Burner Upgrade
- Smart Mill
- Stability Monitor
- Low Load Boiler Package
- Auto Tune
- Air Preheater Upgrade

*Trademark of General Electric Company.

Min. Load 40 → 10% Start-up $3 \rightarrow 1.5 h (hot)$ $10 \rightarrow 4 h (cold)$

Load Gradient 2 → 6%/min Heat Rate -2% Availability +2%

No_x Emission -20%

GE Flexible Steam Turbine Features

Boiler Flexibility Topics

Practical Examples

- Optimisation / Minor works / Low Load
- Minor Intervention / Efficiency / Upgrade Envelope
- Fuel Change Topic
- Fast Ramp / Upgrade
- Major Retrofit

Optimisation – Conventional Power Plants Load Range Extension for Bituminous Coal

Min Load Reduction due to Process and Equipment Optimisation

033 297p -

Small Project 800 MW Bituminous coal unit

- 800 MW hard coal unit
- GE Tower boiler, once through
- Tangential firing
- GE steam turbine
- Unit with district heating (240 MW) and process steam extraction
- Design Low load operation: 30%

Load Range & Efficiency Improvement Minor Intervention

- 2 x 500 MWe, Tilting Tangential Burners. GE OEM.
- Coal Preparation by 6 x Vertical Spindle GE pulverizers
- Fired on <u>high ash</u> Bituminous coal
- Problem, <u>high unburnt loss</u>, minimum load ~50%
- Minor modification to burners to target low load and UBC reduction.

Load Range & Efficiency Improvement Minor Intervention

	UBC Performance (lower = better)	Lowest Load with coal only
Actual pre-conversion	8.6%	50%
Predicted post conversion	6.8%	25%
Actual post conversion	3.8%	25%

Page 13 Confidential. Not to be copied, distributed, or reproduced without prior approval.

Change of Fuel – Fuel Flexibility

Fuel and load Flexibility - Bituminous Coal

Indirect Firing System Reduction of dynamic Response Delay

Fast Load Changes

Reduction of dynamic Response Delay (Secondary Control)

- Grinding Process causes Delays due to Storage Capacity of Mill
- Indirect Firing separation of Grinding and Storage
- Significant Reduction of System Response Time

Optimisation of Conventional Firing Option for Dynamic Response Improvement

Direct Firing System (Conventional)

(Partly) Indirect Firing System

Optimisation of Conventional Firing Start up with – Dried Coal – eliminates support energy Niederaußem K: 8 x 90 MW_{th}

- Start-up/Support Firing
- Operation since 2003

Dried Lignite Burner

Dried Lignite Storage Silo

Large Retrofit Project

Superheaters & Reheaters Performance Adjustments Material Upgrades Cleanability

Economizer

Performance Improvem. Cleanability Erosion Protection

Ducts & expan. joints Material Upgrades Repairs

Air heater

High Efficiency Heating Elements Air Leakage reduction Cleanability

	before	after		
NOx	>400	<200	mg/Nm3	
Power	370	394	MW	
Cycle Eff	38%	41.30%		
Feed temp	255	275	С	
Live Steam	540	570	С	
1 LU				

Waterwalls Cleanability New Burner openings

Overfire air (OFA)

Two stage OFA

Burners Low NOx burners

Bottom ash handling Modified After Burning Grate

Coal pulverizers Improved classifiers Advanced wear parts

Summary

	State of the Art	Further Development (Newly built and existing Plants)
Time for Start-up	2 - 6 Hours Depending on Star t up Conditions	1 - 4 Hours Depending on Startup Conditions
Minimum Load Bituminous Coal	Newly built Plants: 25 % Existing Plants: 40 %	Conventional Firing 15 - 20 % Indirect Firing 10 %- 15 %
Load Ramps)	ca. 2 – 5 % / min	Up to 10 % / min
Biomass	10 % CoCombustion	100 % Combustion

